RunOutput
Package: flyte.app
Use a run’s output for app inputs.
This enables the declaration of an app input dependency on a the output of
a run, given by a specific run name, or a task name and version. If
task_auto_version == 'latest', the latest version of the task will be used.
If task_auto_version == 'current', the version will be derived from the callee
app or task context.
class RunOutput(
data: Any,
)Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be
validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
| Parameter | Type | Description |
|---|---|---|
data |
Any |
Methods
| Method | Description |
|---|---|
check_type() |
|
construct() |
|
copy() |
Returns a copy of the model. |
dict() |
|
from_orm() |
|
get() |
|
json() |
|
materialize() |
|
model_construct() |
Creates a new instance of the Model class with validated data. |
model_copy() |
!!! abstract “Usage Documentation”. |
model_dump() |
!!! abstract “Usage Documentation”. |
model_dump_json() |
!!! abstract “Usage Documentation”. |
model_json_schema() |
Generates a JSON schema for a model class. |
model_parametrized_name() |
Compute the class name for parametrizations of generic classes. |
model_post_init() |
Override this method to perform additional initialization after __init__ and model_construct. |
model_rebuild() |
Try to rebuild the pydantic-core schema for the model. |
model_validate() |
Validate a pydantic model instance. |
model_validate_json() |
!!! abstract “Usage Documentation”. |
model_validate_strings() |
Validate the given object with string data against the Pydantic model. |
parse_file() |
|
parse_obj() |
|
parse_raw() |
|
schema() |
|
schema_json() |
|
update_forward_refs() |
|
validate() |
check_type()
def check_type(
data: typing.Any,
) -> typing.Any| Parameter | Type | Description |
|---|---|---|
data |
typing.Any |
construct()
def construct(
_fields_set: set[str] | None,
values: Any,
) -> Self| Parameter | Type | Description |
|---|---|---|
_fields_set |
set[str] | None |
|
values |
Any |
copy()
def copy(
include: AbstractSetIntStr | MappingIntStrAny | None,
exclude: AbstractSetIntStr | MappingIntStrAny | None,
update: Dict[str, Any] | None,
deep: bool,
) -> SelfReturns a copy of the model.
> [!WARNING] Deprecated
> This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)| Parameter | Type | Description |
|---|---|---|
include |
AbstractSetIntStr | MappingIntStrAny | None |
Optional set or mapping specifying which fields to include in the copied model. |
exclude |
AbstractSetIntStr | MappingIntStrAny | None |
Optional set or mapping specifying which fields to exclude in the copied model. |
update |
Dict[str, Any] | None |
Optional dictionary of field-value pairs to override field values in the copied model. |
deep |
bool |
If True, the values of fields that are Pydantic models will be deep-copied. |
dict()
def dict(
include: IncEx | None,
exclude: IncEx | None,
by_alias: bool,
exclude_unset: bool,
exclude_defaults: bool,
exclude_none: bool,
) -> Dict[str, Any]| Parameter | Type | Description |
|---|---|---|
include |
IncEx | None |
|
exclude |
IncEx | None |
|
by_alias |
bool |
|
exclude_unset |
bool |
|
exclude_defaults |
bool |
|
exclude_none |
bool |
from_orm()
def from_orm(
obj: Any,
) -> Self| Parameter | Type | Description |
|---|---|---|
obj |
Any |
get()
def get()json()
def json(
include: IncEx | None,
exclude: IncEx | None,
by_alias: bool,
exclude_unset: bool,
exclude_defaults: bool,
exclude_none: bool,
encoder: Callable[[Any], Any] | None,
models_as_dict: bool,
dumps_kwargs: Any,
) -> str| Parameter | Type | Description |
|---|---|---|
include |
IncEx | None |
|
exclude |
IncEx | None |
|
by_alias |
bool |
|
exclude_unset |
bool |
|
exclude_defaults |
bool |
|
exclude_none |
bool |
|
encoder |
Callable[[Any], Any] | None |
|
models_as_dict |
bool |
|
dumps_kwargs |
Any |
materialize()
def materialize()model_construct()
def model_construct(
_fields_set: set[str] | None,
values: Any,
) -> SelfCreates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
> [!NOTE]
> model_construct() generally respects the model_config.extra setting on the provided model.
> That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__
> and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored.
> Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in
> an error if extra values are passed, but they will be ignored.
| Parameter | Type | Description |
|---|---|---|
_fields_set |
set[str] | None |
A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used. |
values |
Any |
Trusted or pre-validated data dictionary. |
model_copy()
def model_copy(
update: Mapping[str, Any] | None,
deep: bool,
) -> Self!!! abstract “Usage Documentation”
model_copy
Returns a copy of the model.
> [!NOTE]
> The underlying instance’s [__dict__][object.dict] attribute is copied. This
> might have unexpected side effects if you store anything in it, on top of the model
> fields (e.g. the value of [cached properties][functools.cached_property]).
| Parameter | Type | Description |
|---|---|---|
update |
Mapping[str, Any] | None |
|
deep |
bool |
Set to True to make a deep copy of the model. |
model_dump()
def model_dump(
mode: Literal['json', 'python'] | str,
include: IncEx | None,
exclude: IncEx | None,
context: Any | None,
by_alias: bool | None,
exclude_unset: bool,
exclude_defaults: bool,
exclude_none: bool,
exclude_computed_fields: bool,
round_trip: bool,
warnings: bool | Literal['none', 'warn', 'error'],
fallback: Callable[[Any], Any] | None,
serialize_as_any: bool,
) -> dict[str, Any]!!! abstract “Usage Documentation”
model_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
| Parameter | Type | Description |
|---|---|---|
mode |
Literal['json', 'python'] | str |
The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects. |
include |
IncEx | None |
A set of fields to include in the output. |
exclude |
IncEx | None |
A set of fields to exclude from the output. |
context |
Any | None |
Additional context to pass to the serializer. |
by_alias |
bool | None |
Whether to use the field’s alias in the dictionary key if defined. |
exclude_unset |
bool |
Whether to exclude fields that have not been explicitly set. |
exclude_defaults |
bool |
Whether to exclude fields that are set to their default value. |
exclude_none |
bool |
Whether to exclude fields that have a value of None. |
exclude_computed_fields |
bool |
Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
round_trip |
bool |
If True, dumped values should be valid as input for non-idempotent types such as Json[T]. |
warnings |
bool | Literal['none', 'warn', 'error'] |
How to handle serialization errors. False/“none” ignores them, True/“warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
fallback |
Callable[[Any], Any] | None |
A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
serialize_as_any |
bool |
Whether to serialize fields with duck-typing serialization behavior. |
model_dump_json()
def model_dump_json(
indent: int | None,
ensure_ascii: bool,
include: IncEx | None,
exclude: IncEx | None,
context: Any | None,
by_alias: bool | None,
exclude_unset: bool,
exclude_defaults: bool,
exclude_none: bool,
exclude_computed_fields: bool,
round_trip: bool,
warnings: bool | Literal['none', 'warn', 'error'],
fallback: Callable[[Any], Any] | None,
serialize_as_any: bool,
) -> str!!! abstract “Usage Documentation”
model_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
| Parameter | Type | Description |
|---|---|---|
indent |
int | None |
Indentation to use in the JSON output. If None is passed, the output will be compact. |
ensure_ascii |
bool |
If True, the output is guaranteed to have all incoming non-ASCII characters escaped. If False (the default), these characters will be output as-is. |
include |
IncEx | None |
Field(s) to include in the JSON output. |
exclude |
IncEx | None |
Field(s) to exclude from the JSON output. |
context |
Any | None |
Additional context to pass to the serializer. |
by_alias |
bool | None |
Whether to serialize using field aliases. |
exclude_unset |
bool |
Whether to exclude fields that have not been explicitly set. |
exclude_defaults |
bool |
Whether to exclude fields that are set to their default value. |
exclude_none |
bool |
Whether to exclude fields that have a value of None. |
exclude_computed_fields |
bool |
Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
round_trip |
bool |
If True, dumped values should be valid as input for non-idempotent types such as Json[T]. |
warnings |
bool | Literal['none', 'warn', 'error'] |
How to handle serialization errors. False/“none” ignores them, True/“warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
fallback |
Callable[[Any], Any] | None |
A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
serialize_as_any |
bool |
Whether to serialize fields with duck-typing serialization behavior. |
model_json_schema()
def model_json_schema(
by_alias: bool,
ref_template: str,
schema_generator: type[GenerateJsonSchema],
mode: JsonSchemaMode,
union_format: Literal['any_of', 'primitive_type_array'],
) -> dict[str, Any]Generates a JSON schema for a model class.
| Parameter | Type | Description |
|---|---|---|
by_alias |
bool |
Whether to use attribute aliases or not. |
ref_template |
str |
The reference template. - 'any_of': Use the
anyOf keyword to combine schemas (the default). - 'primitive_type_array': Use the
type keyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type (string, boolean, null, integer or number) or contains constraints/metadata, falls back to any_of. |
schema_generator |
type[GenerateJsonSchema] |
To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications |
mode |
JsonSchemaMode |
The mode in which to generate the schema. |
union_format |
Literal['any_of', 'primitive_type_array'] |
model_parametrized_name()
def model_parametrized_name(
params: tuple[type[Any], ...],
) -> strCompute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
| Parameter | Type | Description |
|---|---|---|
params |
tuple[type[Any], ...] |
Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params. |
model_post_init()
def model_post_init(
context: Any,
)Override this method to perform additional initialization after __init__ and model_construct.
This is useful if you want to do some validation that requires the entire model to be initialized.
| Parameter | Type | Description |
|---|---|---|
context |
Any |
model_rebuild()
def model_rebuild(
force: bool,
raise_errors: bool,
_parent_namespace_depth: int,
_types_namespace: MappingNamespace | None,
) -> bool | NoneTry to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
| Parameter | Type | Description |
|---|---|---|
force |
bool |
Whether to force the rebuilding of the model schema, defaults to False. |
raise_errors |
bool |
Whether to raise errors, defaults to True. |
_parent_namespace_depth |
int |
The depth level of the parent namespace, defaults to 2. |
_types_namespace |
MappingNamespace | None |
The types namespace, defaults to None. |
model_validate()
def model_validate(
obj: Any,
strict: bool | None,
extra: ExtraValues | None,
from_attributes: bool | None,
context: Any | None,
by_alias: bool | None,
by_name: bool | None,
) -> SelfValidate a pydantic model instance.
| Parameter | Type | Description |
|---|---|---|
obj |
Any |
The object to validate. |
strict |
bool | None |
Whether to enforce types strictly. |
extra |
ExtraValues | None |
Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details. |
from_attributes |
bool | None |
Whether to extract data from object attributes. |
context |
Any | None |
Additional context to pass to the validator. |
by_alias |
bool | None |
Whether to use the field’s alias when validating against the provided input data. |
by_name |
bool | None |
Whether to use the field’s name when validating against the provided input data. |
model_validate_json()
def model_validate_json(
json_data: str | bytes | bytearray,
strict: bool | None,
extra: ExtraValues | None,
context: Any | None,
by_alias: bool | None,
by_name: bool | None,
) -> Self!!! abstract “Usage Documentation” JSON Parsing
Validate the given JSON data against the Pydantic model.
| Parameter | Type | Description |
|---|---|---|
json_data |
str | bytes | bytearray |
The JSON data to validate. |
strict |
bool | None |
Whether to enforce types strictly. |
extra |
ExtraValues | None |
Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details. |
context |
Any | None |
Extra variables to pass to the validator. |
by_alias |
bool | None |
Whether to use the field’s alias when validating against the provided input data. |
by_name |
bool | None |
Whether to use the field’s name when validating against the provided input data. |
model_validate_strings()
def model_validate_strings(
obj: Any,
strict: bool | None,
extra: ExtraValues | None,
context: Any | None,
by_alias: bool | None,
by_name: bool | None,
) -> SelfValidate the given object with string data against the Pydantic model.
| Parameter | Type | Description |
|---|---|---|
obj |
Any |
The object containing string data to validate. |
strict |
bool | None |
Whether to enforce types strictly. |
extra |
ExtraValues | None |
Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details. |
context |
Any | None |
Extra variables to pass to the validator. |
by_alias |
bool | None |
Whether to use the field’s alias when validating against the provided input data. |
by_name |
bool | None |
Whether to use the field’s name when validating against the provided input data. |
parse_file()
def parse_file(
path: str | Path,
content_type: str | None,
encoding: str,
proto: DeprecatedParseProtocol | None,
allow_pickle: bool,
) -> Self| Parameter | Type | Description |
|---|---|---|
path |
str | Path |
|
content_type |
str | None |
|
encoding |
str |
|
proto |
DeprecatedParseProtocol | None |
|
allow_pickle |
bool |
parse_obj()
def parse_obj(
obj: Any,
) -> Self| Parameter | Type | Description |
|---|---|---|
obj |
Any |
parse_raw()
def parse_raw(
b: str | bytes,
content_type: str | None,
encoding: str,
proto: DeprecatedParseProtocol | None,
allow_pickle: bool,
) -> Self| Parameter | Type | Description |
|---|---|---|
b |
str | bytes |
|
content_type |
str | None |
|
encoding |
str |
|
proto |
DeprecatedParseProtocol | None |
|
allow_pickle |
bool |
schema()
def schema(
by_alias: bool,
ref_template: str,
) -> Dict[str, Any]| Parameter | Type | Description |
|---|---|---|
by_alias |
bool |
|
ref_template |
str |
schema_json()
def schema_json(
by_alias: bool,
ref_template: str,
dumps_kwargs: Any,
) -> str| Parameter | Type | Description |
|---|---|---|
by_alias |
bool |
|
ref_template |
str |
|
dumps_kwargs |
Any |
update_forward_refs()
def update_forward_refs(
localns: Any,
)| Parameter | Type | Description |
|---|---|---|
localns |
Any |
validate()
def validate(
value: Any,
) -> Self| Parameter | Type | Description |
|---|---|---|
value |
Any |
Properties
| Property | Type | Description |
|---|---|---|
model_extra |
None |
Get extra fields set during validation. Returns: A dictionary of extra fields, or None if config.extra is not set to "allow". |
model_fields_set |
None |
Returns the set of fields that have been explicitly set on this model instance. Returns: A set of strings representing the fields that have been set, i.e. that were not filled from defaults. |