2.0.0b35

Dir

Package: flyte.io

A generic directory class representing a directory with files of a specified format. Provides both async and sync interfaces for directory operations. All methods without _sync suffix are async.

The class should be instantiated using one of the class methods. The constructor should only be used to instantiate references to existing remote directories.

The generic type T represents the format of the files in the directory.

Important methods:

  • from_existing_remote: Create a Dir object referencing an existing remote directory.
  • from_local / from_local_sync: Upload a local directory to remote storage.

Asynchronous methods:

  • walk: Asynchronously iterate through files in the directory.
  • list_files: Asynchronously get a list of all files (non-recursive).
  • download: Asynchronously download the entire directory to a local path.
  • exists: Asynchronously check if the directory exists.
  • get_file: Asynchronously get a specific file from the directory by name.

Synchronous methods (suffixed with _sync):

  • walk_sync: Synchronously iterate through files in the directory.
  • list_files_sync: Synchronously get a list of all files (non-recursive).
  • download_sync: Synchronously download the entire directory to a local path.
  • exists_sync: Synchronously check if the directory exists.
  • get_file_sync: Synchronously get a specific file from the directory by name.

Example: Walk through directory files recursively (Async).

@env.task
async def process_all_files(d: Dir) -> int:
    file_count = 0
    async for file in d.walk(recursive=True):
        async with file.open("rb") as f:
            content = await f.read()
            # Process content
            file_count += 1
    return file_count

Example: Walk through directory files recursively (Sync).

@env.task
def process_all_files_sync(d: Dir) -> int:
    file_count = 0
    for file in d.walk_sync(recursive=True):
        with file.open_sync("rb") as f:
            content = f.read()
            # Process content
            file_count += 1
    return file_count

Example: List files in directory (Async).

@env.task
async def count_files(d: Dir) -> int:
    files = await d.list_files()
    return len(files)

Example: List files in directory (Sync).

@env.task
def count_files_sync(d: Dir) -> int:
    files = d.list_files_sync()
    return len(files)

Example: Get a specific file from directory (Async).

@env.task
async def read_config_file(d: Dir) -> str:
    config_file = await d.get_file("config.json")
    if config_file:
        async with config_file.open("rb") as f:
            return (await f.read()).decode("utf-8")
    return "Config not found"

Example: Get a specific file from directory (Sync).

@env.task
def read_config_file_sync(d: Dir) -> str:
    config_file = d.get_file_sync("config.json")
    if config_file:
        with config_file.open_sync("rb") as f:
            return f.read().decode("utf-8")
    return "Config not found"

Example: Upload a local directory to remote storage (Async).

@env.task
async def upload_directory() -> Dir:
    # Create local directory with files
    os.makedirs("/tmp/my_data", exist_ok=True)
    with open("/tmp/my_data/file1.txt", "w") as f:
        f.write("data1")
    # Upload to remote storage
    return await Dir.from_local("/tmp/my_data/")

Example: Upload a local directory to remote storage (Sync).

@env.task
def upload_directory_sync() -> Dir:
    # Create local directory with files
    os.makedirs("/tmp/my_data", exist_ok=True)
    with open("/tmp/my_data/file1.txt", "w") as f:
        f.write("data1")
    # Upload to remote storage
    return Dir.from_local_sync("/tmp/my_data/")

Example: Download a directory to local storage (Async).

@env.task
async def download_directory(d: Dir) -> str:
    local_path = await d.download()
    # Process files in local directory
    return local_path

Example: Download a directory to local storage (Sync).

@env.task
def download_directory_sync(d: Dir) -> str:
    local_path = d.download_sync()
    # Process files in local directory
    return local_path

Example: Reference an existing remote directory.

@env.task
async def process_existing_dir() -> int:
    d = Dir.from_existing_remote("s3://my-bucket/data/")
    files = await d.list_files()
    return len(files)

Example: Check if directory exists (Async).

@env.task
async def check_directory(d: Dir) -> bool:
    return await d.exists()

Example: Check if directory exists (Sync).

@env.task
def check_directory_sync(d: Dir) -> bool:
    return d.exists_sync()
class Dir(
    data: Any,
)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameter Type Description
data Any

Methods

Method Description
construct()
copy() Returns a copy of the model.
dict()
download() Asynchronously download the entire directory to a local path.
download_sync() Synchronously download the entire directory to a local path.
exists() Asynchronously check if the directory exists.
exists_sync() Synchronously check if the directory exists.
from_existing_remote() Create a Dir reference from an existing remote directory.
from_local() Asynchronously create a new Dir by uploading a local directory to remote storage.
from_local_sync() Synchronously create a new Dir by uploading a local directory to remote storage.
from_orm()
get_file() Asynchronously get a specific file from the directory by name.
get_file_sync() Synchronously get a specific file from the directory by name.
json()
list_files() Asynchronously get a list of all files in the directory (non-recursive).
list_files_sync() Synchronously get a list of all files in the directory (non-recursive).
model_construct() Creates a new instance of the Model class with validated data.
model_copy() !!! abstract “Usage Documentation”.
model_dump() !!! abstract “Usage Documentation”.
model_dump_json() !!! abstract “Usage Documentation”.
model_json_schema() Generates a JSON schema for a model class.
model_parametrized_name() Compute the class name for parametrizations of generic classes.
model_post_init() Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild() Try to rebuild the pydantic-core schema for the model.
model_validate() Validate a pydantic model instance.
model_validate_json() !!! abstract “Usage Documentation”.
model_validate_strings() Validate the given object with string data against the Pydantic model.
parse_file()
parse_obj()
parse_raw()
pre_init() Internal: Pydantic validator to set default name from path.
schema()
schema_json()
schema_match() Internal: Check if incoming schema matches Dir schema.
update_forward_refs()
validate()
walk() Asynchronously walk through the directory and yield File objects.
walk_sync() Synchronously walk through the directory and yield File objects.

construct()

def construct(
    _fields_set: set[str] | None,
    values: Any,
) -> Self
Parameter Type Description
_fields_set set[str] | None
values Any

copy()

def copy(
    include: AbstractSetIntStr | MappingIntStrAny | None,
    exclude: AbstractSetIntStr | MappingIntStrAny | None,
    update: Dict[str, Any] | None,
    deep: bool,
) -> Self

Returns a copy of the model.

> [!WARNING] Deprecated > This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameter Type Description
include AbstractSetIntStr | MappingIntStrAny | None Optional set or mapping specifying which fields to include in the copied model.
exclude AbstractSetIntStr | MappingIntStrAny | None Optional set or mapping specifying which fields to exclude in the copied model.
update Dict[str, Any] | None Optional dictionary of field-value pairs to override field values in the copied model.
deep bool If True, the values of fields that are Pydantic models will be deep-copied.

dict()

def dict(
    include: IncEx | None,
    exclude: IncEx | None,
    by_alias: bool,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
) -> Dict[str, Any]
Parameter Type Description
include IncEx | None
exclude IncEx | None
by_alias bool
exclude_unset bool
exclude_defaults bool
exclude_none bool

download()

def download(
    local_path: Optional[Union[str, Path]],
) -> str

Asynchronously download the entire directory to a local path.

Use this when you need to download all files in a directory to your local filesystem for processing.

Example (Async):

@env.task
async def download_directory(d: Dir) -> str:
    local_dir = await d.download()
    # Process files in the local directory
    return local_dir

Example (Async - Download to specific path):

@env.task
async def download_to_path(d: Dir) -> str:
    local_dir = await d.download("/tmp/my_data/")
    return local_dir
Parameter Type Description
local_path Optional[Union[str, Path]] The local path to download the directory to. If None, a temporary directory will be used and a path will be generated.

download_sync()

def download_sync(
    local_path: Optional[Union[str, Path]],
) -> str

Synchronously download the entire directory to a local path.

Use this in non-async tasks when you need to download all files in a directory to your local filesystem.

Example (Sync):

@env.task
def download_directory_sync(d: Dir) -> str:
    local_dir = d.download_sync()
    # Process files in the local directory
    return local_dir

Example (Sync - Download to specific path):

@env.task
def download_to_path_sync(d: Dir) -> str:
    local_dir = d.download_sync("/tmp/my_data/")
    return local_dir
Parameter Type Description
local_path Optional[Union[str, Path]] The local path to download the directory to. If None, a temporary directory will be used and a path will be generated.

exists()

def exists()

Asynchronously check if the directory exists.

Returns: True if the directory exists, False otherwise

Example (Async):

@env.task
async def check_directory(d: Dir) -> bool:
    if await d.exists():
        print("Directory exists!")
        return True
    return False

exists_sync()

def exists_sync()

Synchronously check if the directory exists.

Use this in non-async tasks or when you need synchronous directory existence checking.

Returns: True if the directory exists, False otherwise

Example (Sync):

@env.task
def check_directory_sync(d: Dir) -> bool:
    if d.exists_sync():
        print("Directory exists!")
        return True
    return False

from_existing_remote()

def from_existing_remote(
    remote_path: str,
    dir_cache_key: Optional[str],
) -> Dir[T]

Create a Dir reference from an existing remote directory.

Use this when you want to reference a directory that already exists in remote storage without uploading it.

Example:

@env.task
async def process_existing_directory() -> int:
    d = Dir.from_existing_remote("s3://my-bucket/data/")
    files = await d.list_files()
    return len(files)

Example (With cache key):

@env.task
async def process_with_cache_key() -> int:
    d = Dir.from_existing_remote("s3://my-bucket/data/", dir_cache_key="abc123")
    files = await d.list_files()
    return len(files)
Parameter Type Description
remote_path str The remote path to the existing directory
dir_cache_key Optional[str] Optional hash value to use for cache key computation. If not specified, the cache key will be computed based on the directory’s attributes.

from_local()

def from_local(
    local_path: Union[str, Path],
    remote_destination: Optional[str],
    dir_cache_key: Optional[str],
) -> Dir[T]

Asynchronously create a new Dir by uploading a local directory to remote storage.

Use this in async tasks when you have a local directory that needs to be uploaded to remote storage.

Example (Async):

@env.task
async def upload_local_directory() -> Dir:
    # Create a local directory with files
    os.makedirs("/tmp/data_dir", exist_ok=True)
    with open("/tmp/data_dir/file1.txt", "w") as f:
        f.write("data1")

    # Upload to remote storage
    remote_dir = await Dir.from_local("/tmp/data_dir/")
    return remote_dir

Example (Async - With specific destination):

@env.task
async def upload_to_specific_path() -> Dir:
    remote_dir = await Dir.from_local("/tmp/data_dir/", "s3://my-bucket/data/")
    return remote_dir

Example (Async - With cache key):

@env.task
async def upload_with_cache_key() -> Dir:
    remote_dir = await Dir.from_local("/tmp/data_dir/", dir_cache_key="my_cache_key_123")
    return remote_dir
Parameter Type Description
local_path Union[str, Path] Path to the local directory
remote_destination Optional[str] Optional remote path to store the directory. If None, a path will be automatically generated.
dir_cache_key Optional[str] Optional precomputed hash value to use for cache key computation when this Dir is used as an input to discoverable tasks. If not specified, the cache key will be based on directory attributes.

from_local_sync()

def from_local_sync(
    local_path: Union[str, Path],
    remote_destination: Optional[str],
    dir_cache_key: Optional[str],
) -> Dir[T]

Synchronously create a new Dir by uploading a local directory to remote storage.

Use this in non-async tasks when you have a local directory that needs to be uploaded to remote storage.

Example (Sync):

@env.task
def upload_local_directory_sync() -> Dir:
    # Create a local directory with files
    os.makedirs("/tmp/data_dir", exist_ok=True)
    with open("/tmp/data_dir/file1.txt", "w") as f:
        f.write("data1")

    # Upload to remote storage
    remote_dir = Dir.from_local_sync("/tmp/data_dir/")
    return remote_dir

Example (Sync - With specific destination):

@env.task
def upload_to_specific_path_sync() -> Dir:
    remote_dir = Dir.from_local_sync("/tmp/data_dir/", "s3://my-bucket/data/")
    return remote_dir

Example (Sync - With cache key):

@env.task
def upload_with_cache_key_sync() -> Dir:
    remote_dir = Dir.from_local_sync("/tmp/data_dir/", dir_cache_key="my_cache_key_123")
    return remote_dir
Parameter Type Description
local_path Union[str, Path] Path to the local directory
remote_destination Optional[str] Optional remote path to store the directory. If None, a path will be automatically generated.
dir_cache_key Optional[str] Optional precomputed hash value to use for cache key computation when this Dir is used as an input to discoverable tasks. If not specified, the cache key will be based on directory attributes.

from_orm()

def from_orm(
    obj: Any,
) -> Self
Parameter Type Description
obj Any

get_file()

def get_file(
    file_name: str,
) -> Optional[File[T]]

Asynchronously get a specific file from the directory by name.

Use this when you know the name of a specific file in the directory you want to access.

Example (Async):

@env.task
async def read_specific_file(d: Dir) -> str:
    file = await d.get_file("data.csv")
    if file:
        async with file.open("rb") as f:
            content = await f.read()
            return content.decode("utf-8")
    return "File not found"
Parameter Type Description
file_name str The name of the file to get

get_file_sync()

def get_file_sync(
    file_name: str,
) -> Optional[File[T]]

Synchronously get a specific file from the directory by name.

Use this in non-async tasks when you know the name of a specific file in the directory you want to access.

Example (Sync):

@env.task
def read_specific_file_sync(d: Dir) -> str:
    file = d.get_file_sync("data.csv")
    if file:
        with file.open_sync("rb") as f:
            content = f.read()
            return content.decode("utf-8")
    return "File not found"
Parameter Type Description
file_name str The name of the file to get

json()

def json(
    include: IncEx | None,
    exclude: IncEx | None,
    by_alias: bool,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    encoder: Callable[[Any], Any] | None,
    models_as_dict: bool,
    dumps_kwargs: Any,
) -> str
Parameter Type Description
include IncEx | None
exclude IncEx | None
by_alias bool
exclude_unset bool
exclude_defaults bool
exclude_none bool
encoder Callable[[Any], Any] | None
models_as_dict bool
dumps_kwargs Any

list_files()

def list_files()

Asynchronously get a list of all files in the directory (non-recursive).

Use this when you need a list of all files in the top-level directory at once.

Returns: A list of File objects for files in the top-level directory

Example (Async):

@env.task
async def count_files(d: Dir) -> int:
    files = await d.list_files()
    return len(files)

Example (Async - Process files):

@env.task
async def process_all_files(d: Dir) -> list[str]:
    files = await d.list_files()
    contents = []
    for file in files:
        async with file.open("rb") as f:
            content = await f.read()
            contents.append(content.decode("utf-8"))
    return contents

list_files_sync()

def list_files_sync()

Synchronously get a list of all files in the directory (non-recursive).

Use this in non-async tasks when you need a list of all files in the top-level directory at once.

Returns: A list of File objects for files in the top-level directory

Example (Sync):

@env.task
def count_files_sync(d: Dir) -> int:
    files = d.list_files_sync()
    return len(files)

Example (Sync - Process files):

@env.task
def process_all_files_sync(d: Dir) -> list[str]:
    files = d.list_files_sync()
    contents = []
    for file in files:
        with file.open_sync("rb") as f:
            content = f.read()
            contents.append(content.decode("utf-8"))
    return contents

model_construct()

def model_construct(
    _fields_set: set[str] | None,
    values: Any,
) -> Self

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

> [!NOTE] > model_construct() generally respects the model_config.extra setting on the provided model. > That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ > and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. > Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in > an error if extra values are passed, but they will be ignored.

Parameter Type Description
_fields_set set[str] | None A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values Any Trusted or pre-validated data dictionary.

model_copy()

def model_copy(
    update: Mapping[str, Any] | None,
    deep: bool,
) -> Self

!!! abstract “Usage Documentation” model_copy

Returns a copy of the model.

> [!NOTE] > The underlying instance’s [__dict__][object.dict] attribute is copied. This > might have unexpected side effects if you store anything in it, on top of the model > fields (e.g. the value of [cached properties][functools.cached_property]).

Parameter Type Description
update Mapping[str, Any] | None
deep bool Set to True to make a deep copy of the model.

model_dump()

def model_dump(
    mode: Literal['json', 'python'] | str,
    include: IncEx | None,
    exclude: IncEx | None,
    context: Any | None,
    by_alias: bool | None,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    exclude_computed_fields: bool,
    round_trip: bool,
    warnings: bool | Literal['none', 'warn', 'error'],
    fallback: Callable[[Any], Any] | None,
    serialize_as_any: bool,
) -> dict[str, Any]

!!! abstract “Usage Documentation” model_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameter Type Description
mode Literal['json', 'python'] | str The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include IncEx | None A set of fields to include in the output.
exclude IncEx | None A set of fields to exclude from the output.
context Any | None Additional context to pass to the serializer.
by_alias bool | None Whether to use the field’s alias in the dictionary key if defined.
exclude_unset bool Whether to exclude fields that have not been explicitly set.
exclude_defaults bool Whether to exclude fields that are set to their default value.
exclude_none bool Whether to exclude fields that have a value of None.
exclude_computed_fields bool Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead.
round_trip bool If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings bool | Literal['none', 'warn', 'error'] How to handle serialization errors. False/“none” ignores them, True/“warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback Callable[[Any], Any] | None A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any bool Whether to serialize fields with duck-typing serialization behavior.

model_dump_json()

def model_dump_json(
    indent: int | None,
    ensure_ascii: bool,
    include: IncEx | None,
    exclude: IncEx | None,
    context: Any | None,
    by_alias: bool | None,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    exclude_computed_fields: bool,
    round_trip: bool,
    warnings: bool | Literal['none', 'warn', 'error'],
    fallback: Callable[[Any], Any] | None,
    serialize_as_any: bool,
) -> str

!!! abstract “Usage Documentation” model_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameter Type Description
indent int | None Indentation to use in the JSON output. If None is passed, the output will be compact.
ensure_ascii bool If True, the output is guaranteed to have all incoming non-ASCII characters escaped. If False (the default), these characters will be output as-is.
include IncEx | None Field(s) to include in the JSON output.
exclude IncEx | None Field(s) to exclude from the JSON output.
context Any | None Additional context to pass to the serializer.
by_alias bool | None Whether to serialize using field aliases.
exclude_unset bool Whether to exclude fields that have not been explicitly set.
exclude_defaults bool Whether to exclude fields that are set to their default value.
exclude_none bool Whether to exclude fields that have a value of None.
exclude_computed_fields bool Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead.
round_trip bool If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings bool | Literal['none', 'warn', 'error'] How to handle serialization errors. False/“none” ignores them, True/“warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback Callable[[Any], Any] | None A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any bool Whether to serialize fields with duck-typing serialization behavior.

model_json_schema()

def model_json_schema(
    by_alias: bool,
    ref_template: str,
    schema_generator: type[GenerateJsonSchema],
    mode: JsonSchemaMode,
    union_format: Literal['any_of', 'primitive_type_array'],
) -> dict[str, Any]

Generates a JSON schema for a model class.

Parameter Type Description
by_alias bool Whether to use attribute aliases or not.
ref_template str The reference template. - 'any_of': Use the anyOf keyword to combine schemas (the default). - 'primitive_type_array': Use the type keyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type (string, boolean, null, integer or number) or contains constraints/metadata, falls back to any_of.
schema_generator type[GenerateJsonSchema] To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode JsonSchemaMode The mode in which to generate the schema.
union_format Literal['any_of', 'primitive_type_array']

model_parametrized_name()

def model_parametrized_name(
    params: tuple[type[Any], ...],
) -> str

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameter Type Description
params tuple[type[Any], ...] Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

model_post_init()

def model_post_init(
    context: Any,
)

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Parameter Type Description
context Any

model_rebuild()

def model_rebuild(
    force: bool,
    raise_errors: bool,
    _parent_namespace_depth: int,
    _types_namespace: MappingNamespace | None,
) -> bool | None

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameter Type Description
force bool Whether to force the rebuilding of the model schema, defaults to False.
raise_errors bool Whether to raise errors, defaults to True.
_parent_namespace_depth int The depth level of the parent namespace, defaults to 2.
_types_namespace MappingNamespace | None The types namespace, defaults to None.

model_validate()

def model_validate(
    obj: Any,
    strict: bool | None,
    extra: ExtraValues | None,
    from_attributes: bool | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

Validate a pydantic model instance.

Parameter Type Description
obj Any The object to validate.
strict bool | None Whether to enforce types strictly.
extra ExtraValues | None Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details.
from_attributes bool | None Whether to extract data from object attributes.
context Any | None Additional context to pass to the validator.
by_alias bool | None Whether to use the field’s alias when validating against the provided input data.
by_name bool | None Whether to use the field’s name when validating against the provided input data.

model_validate_json()

def model_validate_json(
    json_data: str | bytes | bytearray,
    strict: bool | None,
    extra: ExtraValues | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

!!! abstract “Usage Documentation” JSON Parsing

Validate the given JSON data against the Pydantic model.

Parameter Type Description
json_data str | bytes | bytearray The JSON data to validate.
strict bool | None Whether to enforce types strictly.
extra ExtraValues | None Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details.
context Any | None Extra variables to pass to the validator.
by_alias bool | None Whether to use the field’s alias when validating against the provided input data.
by_name bool | None Whether to use the field’s name when validating against the provided input data.

model_validate_strings()

def model_validate_strings(
    obj: Any,
    strict: bool | None,
    extra: ExtraValues | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

Validate the given object with string data against the Pydantic model.

Parameter Type Description
obj Any The object containing string data to validate.
strict bool | None Whether to enforce types strictly.
extra ExtraValues | None Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details.
context Any | None Extra variables to pass to the validator.
by_alias bool | None Whether to use the field’s alias when validating against the provided input data.
by_name bool | None Whether to use the field’s name when validating against the provided input data.

parse_file()

def parse_file(
    path: str | Path,
    content_type: str | None,
    encoding: str,
    proto: DeprecatedParseProtocol | None,
    allow_pickle: bool,
) -> Self
Parameter Type Description
path str | Path
content_type str | None
encoding str
proto DeprecatedParseProtocol | None
allow_pickle bool

parse_obj()

def parse_obj(
    obj: Any,
) -> Self
Parameter Type Description
obj Any

parse_raw()

def parse_raw(
    b: str | bytes,
    content_type: str | None,
    encoding: str,
    proto: DeprecatedParseProtocol | None,
    allow_pickle: bool,
) -> Self
Parameter Type Description
b str | bytes
content_type str | None
encoding str
proto DeprecatedParseProtocol | None
allow_pickle bool

pre_init()

def pre_init(
    data,
)

Internal: Pydantic validator to set default name from path. Not intended for direct use.

Parameter Type Description
data

schema()

def schema(
    by_alias: bool,
    ref_template: str,
) -> Dict[str, Any]
Parameter Type Description
by_alias bool
ref_template str

schema_json()

def schema_json(
    by_alias: bool,
    ref_template: str,
    dumps_kwargs: Any,
) -> str
Parameter Type Description
by_alias bool
ref_template str
dumps_kwargs Any

schema_match()

def schema_match(
    incoming: dict,
)

Internal: Check if incoming schema matches Dir schema. Not intended for direct use.

Parameter Type Description
incoming dict

update_forward_refs()

def update_forward_refs(
    localns: Any,
)
Parameter Type Description
localns Any

validate()

def validate(
    value: Any,
) -> Self
Parameter Type Description
value Any

walk()

def walk(
    recursive: bool,
    max_depth: Optional[int],
) -> AsyncIterator[File[T]]

Asynchronously walk through the directory and yield File objects.

Use this to iterate through all files in a directory. Each yielded File can be read directly without downloading.

Example (Async - Recursive):

@env.task
async def list_all_files(d: Dir) -> list[str]:
    file_names = []
    async for file in d.walk(recursive=True):
        file_names.append(file.name)
    return file_names

Example (Async - Non-recursive):

@env.task
async def list_top_level_files(d: Dir) -> list[str]:
    file_names = []
    async for file in d.walk(recursive=False):
        file_names.append(file.name)
    return file_names

Example (Async - With max depth):

@env.task
async def list_files_max_depth(d: Dir) -> list[str]:
    file_names = []
    async for file in d.walk(recursive=True, max_depth=2):
        file_names.append(file.name)
    return file_names
Parameter Type Description
recursive bool If True, recursively walk subdirectories. If False, only list files in the top-level directory.
max_depth Optional[int] Maximum depth for recursive walking. If None, walk through all subdirectories.

walk_sync()

def walk_sync(
    recursive: bool,
    file_pattern: str,
    max_depth: Optional[int],
) -> Iterator[File[T]]

Synchronously walk through the directory and yield File objects.

Use this in non-async tasks to iterate through all files in a directory.

Example (Sync - Recursive):

@env.task
def list_all_files_sync(d: Dir) -> list[str]:
    file_names = []
    for file in d.walk_sync(recursive=True):
        file_names.append(file.name)
    return file_names

Example (Sync - With file pattern):

@env.task
def list_text_files(d: Dir) -> list[str]:
    file_names = []
    for file in d.walk_sync(recursive=True, file_pattern="*.txt"):
        file_names.append(file.name)
    return file_names

Example (Sync - Non-recursive with max depth):

@env.task
def list_files_limited(d: Dir) -> list[str]:
    file_names = []
    for file in d.walk_sync(recursive=True, max_depth=2):
        file_names.append(file.name)
    return file_names
Parameter Type Description
recursive bool If True, recursively walk subdirectories. If False, only list files in the top-level directory.
file_pattern str Glob pattern to filter files (e.g., “.txt”, “.csv”). Default is “*” (all files).
max_depth Optional[int] Maximum depth for recursive walking. If None, walk through all subdirectories.

Properties

Property Type Description
model_extra None Get extra fields set during validation. Returns: A dictionary of extra fields, or None if config.extra is not set to "allow".
model_fields_set None Returns the set of fields that have been explicitly set on this model instance. Returns: A set of strings representing the fields that have been set, i.e. that were not filled from defaults.