2.0.0b35

File

Package: flyte.io

A generic file class representing a file with a specified format. Provides both async and sync interfaces for file operations. All methods without _sync suffix are async.

The class should be instantiated using one of the class methods. The constructor should be used only to instantiate references to existing remote objects.

The generic type T represents the format of the file.

Important methods:

  • from_existing_remote: Create a File object from an existing remote file.
  • new_remote: Create a new File reference for a remote file that will be written to.

Asynchronous methods:

  • open: Asynchronously open the file and return a file-like object.
  • download: Asynchronously download the file to a local path.
  • from_local: Asynchronously create a File object from a local file, uploading it to remote storage.
  • exists: Asynchronously check if the file exists.

Synchronous methods (suffixed with _sync):

  • open_sync: Synchronously open the file and return a file-like object.
  • download_sync: Synchronously download the file to a local path.
  • from_local_sync: Synchronously create a File object from a local file, uploading it to remote storage.
  • exists_sync: Synchronously check if the file exists.

Example: Read a file input in a Task (Async).

@env.task
async def read_file(file: File) -> str:
    async with file.open("rb") as f:
        content = bytes(await f.read())
        return content.decode("utf-8")

Example: Read a file input in a Task (Sync).

@env.task
def read_file_sync(file: File) -> str:
    with file.open_sync("rb") as f:
        content = f.read()
        return content.decode("utf-8")

Example: Write a file by streaming it directly to blob storage (Async).

@env.task
async def write_file() -> File:
    file = File.new_remote()
    async with file.open("wb") as f:
        await f.write(b"Hello, World!")
    return file

Example: Upload a local file to remote storage (Async).

@env.task
async def upload_file() -> File:
    # Write to local file first
    with open("/tmp/data.csv", "w") as f:
        f.write("col1,col2\n1,2\n3,4\n")
    # Upload to remote storage
    return await File.from_local("/tmp/data.csv")

Example: Upload a local file to remote storage (Sync).

@env.task
def upload_file_sync() -> File:
    # Write to local file first
    with open("/tmp/data.csv", "w") as f:
        f.write("col1,col2\n1,2\n3,4\n")
    # Upload to remote storage
    return File.from_local_sync("/tmp/data.csv")

Example: Download a file to local storage (Async).

@env.task
async def download_file(file: File) -> str:
    local_path = await file.download()
    # Process the local file
    with open(local_path, "r") as f:
        return f.read()

Example: Download a file to local storage (Sync).

@env.task
def download_file_sync(file: File) -> str:
    local_path = file.download_sync()
    # Process the local file
    with open(local_path, "r") as f:
        return f.read()

Example: Reference an existing remote file.

@env.task
async def process_existing_file() -> str:
    file = File.from_existing_remote("s3://my-bucket/data.csv")
    async with file.open("rb") as f:
        content = await f.read()
        return content.decode("utf-8")

Example: Check if a file exists (Async).

@env.task
async def check_file(file: File) -> bool:
    return await file.exists()

Example: Check if a file exists (Sync).

@env.task
def check_file_sync(file: File) -> bool:
    return file.exists_sync()

Example: Pass through a file without copying.

@env.task
async def pass_through(file: File) -> File:
    # No copy occurs - just passes the reference
    return file
class File(
    data: Any,
)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameter Type Description
data Any

Methods

Method Description
construct()
copy() Returns a copy of the model.
dict()
download() Asynchronously download the file to a local path.
download_sync() Synchronously download the file to a local path.
exists() Asynchronously check if the file exists.
exists_sync() Synchronously check if the file exists.
from_existing_remote() Create a File reference from an existing remote file.
from_local() Asynchronously create a new File object from a local file by uploading it to remote storage.
from_local_sync() Synchronously create a new File object from a local file by uploading it to remote storage.
from_orm()
json()
model_construct() Creates a new instance of the Model class with validated data.
model_copy() !!! abstract “Usage Documentation”.
model_dump() !!! abstract “Usage Documentation”.
model_dump_json() !!! abstract “Usage Documentation”.
model_json_schema() Generates a JSON schema for a model class.
model_parametrized_name() Compute the class name for parametrizations of generic classes.
model_post_init() Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild() Try to rebuild the pydantic-core schema for the model.
model_validate() Validate a pydantic model instance.
model_validate_json() !!! abstract “Usage Documentation”.
model_validate_strings() Validate the given object with string data against the Pydantic model.
new_remote() Create a new File reference for a remote file that will be written to.
open() Asynchronously open the file and return a file-like object.
open_sync() Synchronously open the file and return a file-like object.
parse_file()
parse_obj()
parse_raw()
pre_init() Internal: Pydantic validator to set default name from path.
schema()
schema_json()
schema_match() Internal: Check if incoming schema matches File schema.
update_forward_refs()
validate()

construct()

def construct(
    _fields_set: set[str] | None,
    values: Any,
) -> Self
Parameter Type Description
_fields_set set[str] | None
values Any

copy()

def copy(
    include: AbstractSetIntStr | MappingIntStrAny | None,
    exclude: AbstractSetIntStr | MappingIntStrAny | None,
    update: Dict[str, Any] | None,
    deep: bool,
) -> Self

Returns a copy of the model.

> [!WARNING] Deprecated > This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameter Type Description
include AbstractSetIntStr | MappingIntStrAny | None Optional set or mapping specifying which fields to include in the copied model.
exclude AbstractSetIntStr | MappingIntStrAny | None Optional set or mapping specifying which fields to exclude in the copied model.
update Dict[str, Any] | None Optional dictionary of field-value pairs to override field values in the copied model.
deep bool If True, the values of fields that are Pydantic models will be deep-copied.

dict()

def dict(
    include: IncEx | None,
    exclude: IncEx | None,
    by_alias: bool,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
) -> Dict[str, Any]
Parameter Type Description
include IncEx | None
exclude IncEx | None
by_alias bool
exclude_unset bool
exclude_defaults bool
exclude_none bool

download()

def download(
    local_path: Optional[Union[str, Path]],
) -> str

Asynchronously download the file to a local path.

Use this when you need to download a remote file to your local filesystem for processing.

Example (Async):

@env.task
async def download_and_process(f: File) -> str:
    local_path = await f.download()
    # Now process the local file
    with open(local_path, "r") as fh:
        return fh.read()

Example (Download to specific path):

@env.task
async def download_to_path(f: File) -> str:
    local_path = await f.download("/tmp/myfile.csv")
    return local_path
Parameter Type Description
local_path Optional[Union[str, Path]] The local path to download the file to. If None, a temporary directory will be used and a path will be generated.

download_sync()

def download_sync(
    local_path: Optional[Union[str, Path]],
) -> str

Synchronously download the file to a local path.

Use this in non-async tasks when you need to download a remote file to your local filesystem.

Example (Sync):

@env.task
def download_and_process_sync(f: File) -> str:
    local_path = f.download_sync()
    # Now process the local file
    with open(local_path, "r") as fh:
        return fh.read()

Example (Download to specific path):

@env.task
def download_to_path_sync(f: File) -> str:
    local_path = f.download_sync("/tmp/myfile.csv")
    return local_path
Parameter Type Description
local_path Optional[Union[str, Path]] The local path to download the file to. If None, a temporary directory will be used and a path will be generated.

exists()

def exists()

Asynchronously check if the file exists.

Example (Async):

@env.task
async def check_file(f: File) -> bool:
    if await f.exists():
        print("File exists!")
        return True
    return False

Returns: True if the file exists, False otherwise

exists_sync()

def exists_sync()

Synchronously check if the file exists.

Use this in non-async tasks or when you need synchronous file existence checking.

Example (Sync):

@env.task
def check_file_sync(f: File) -> bool:
    if f.exists_sync():
        print("File exists!")
        return True
    return False

Returns: True if the file exists, False otherwise

from_existing_remote()

def from_existing_remote(
    remote_path: str,
    file_cache_key: Optional[str],
) -> File[T]

Create a File reference from an existing remote file.

Use this when you want to reference a file that already exists in remote storage without uploading it.

Example:

@env.task
async def process_existing_file() -> str:
    file = File.from_existing_remote("s3://my-bucket/data.csv")
    async with file.open("rb") as f:
        content = await f.read()
    return content.decode("utf-8")
Parameter Type Description
remote_path str The remote path to the existing file
file_cache_key Optional[str] Optional hash value to use for cache key computation. If not specified, the cache key will be computed based on the file’s attributes (path, name, format).

from_local()

def from_local(
    local_path: Union[str, Path],
    remote_destination: Optional[str],
    hash_method: Optional[HashMethod | str],
) -> File[T]

Asynchronously create a new File object from a local file by uploading it to remote storage.

Use this in async tasks when you have a local file that needs to be uploaded to remote storage.

Example (Async):

@env.task
async def upload_local_file() -> File:
    # Create a local file
    async with aiofiles.open("/tmp/data.csv", "w") as f:
        await f.write("col1,col2




    # Upload to remote storage
    remote_file = await File.from_local("/tmp/data.csv")
    return remote_file

Example (With specific destination):

@env.task
async def upload_to_specific_path() -> File:
    remote_file = await File.from_local("/tmp/data.csv", "s3://my-bucket/data.csv")
    return remote_file
Parameter Type Description
local_path Union[str, Path] Path to the local file
remote_destination Optional[str] Optional remote path to store the file. If None, a path will be automatically generated.
hash_method Optional[HashMethod | str] Optional HashMethod or string to use for cache key computation. If a string is provided, it will be used as a precomputed cache key. If a HashMethod is provided, it will compute the hash during upload. If not specified, the cache key will be based on file attributes.

from_local_sync()

def from_local_sync(
    local_path: Union[str, Path],
    remote_destination: Optional[str],
    hash_method: Optional[HashMethod | str],
) -> File[T]

Synchronously create a new File object from a local file by uploading it to remote storage.

Use this in non-async tasks when you have a local file that needs to be uploaded to remote storage.

Example (Sync):

@env.task
def upload_local_file_sync() -> File:
    # Create a local file
    with open("/tmp/data.csv", "w") as f:
        f.write("col1,col2




    # Upload to remote storage
    remote_file = File.from_local_sync("/tmp/data.csv")
    return remote_file

Example (With specific destination):

@env.task
def upload_to_specific_path() -> File:
    remote_file = File.from_local_sync("/tmp/data.csv", "s3://my-bucket/data.csv")
    return remote_file
Parameter Type Description
local_path Union[str, Path] Path to the local file
remote_destination Optional[str] Optional remote path to store the file. If None, a path will be automatically generated.
hash_method Optional[HashMethod | str] Optional HashMethod or string to use for cache key computation. If a string is provided, it will be used as a precomputed cache key. If a HashMethod is provided, it will compute the hash during upload. If not specified, the cache key will be based on file attributes.

from_orm()

def from_orm(
    obj: Any,
) -> Self
Parameter Type Description
obj Any

json()

def json(
    include: IncEx | None,
    exclude: IncEx | None,
    by_alias: bool,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    encoder: Callable[[Any], Any] | None,
    models_as_dict: bool,
    dumps_kwargs: Any,
) -> str
Parameter Type Description
include IncEx | None
exclude IncEx | None
by_alias bool
exclude_unset bool
exclude_defaults bool
exclude_none bool
encoder Callable[[Any], Any] | None
models_as_dict bool
dumps_kwargs Any

model_construct()

def model_construct(
    _fields_set: set[str] | None,
    values: Any,
) -> Self

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

> [!NOTE] > model_construct() generally respects the model_config.extra setting on the provided model. > That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ > and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. > Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in > an error if extra values are passed, but they will be ignored.

Parameter Type Description
_fields_set set[str] | None A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values Any Trusted or pre-validated data dictionary.

model_copy()

def model_copy(
    update: Mapping[str, Any] | None,
    deep: bool,
) -> Self

!!! abstract “Usage Documentation” model_copy

Returns a copy of the model.

> [!NOTE] > The underlying instance’s [__dict__][object.dict] attribute is copied. This > might have unexpected side effects if you store anything in it, on top of the model > fields (e.g. the value of [cached properties][functools.cached_property]).

Parameter Type Description
update Mapping[str, Any] | None
deep bool Set to True to make a deep copy of the model.

model_dump()

def model_dump(
    mode: Literal['json', 'python'] | str,
    include: IncEx | None,
    exclude: IncEx | None,
    context: Any | None,
    by_alias: bool | None,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    exclude_computed_fields: bool,
    round_trip: bool,
    warnings: bool | Literal['none', 'warn', 'error'],
    fallback: Callable[[Any], Any] | None,
    serialize_as_any: bool,
) -> dict[str, Any]

!!! abstract “Usage Documentation” model_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameter Type Description
mode Literal['json', 'python'] | str The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include IncEx | None A set of fields to include in the output.
exclude IncEx | None A set of fields to exclude from the output.
context Any | None Additional context to pass to the serializer.
by_alias bool | None Whether to use the field’s alias in the dictionary key if defined.
exclude_unset bool Whether to exclude fields that have not been explicitly set.
exclude_defaults bool Whether to exclude fields that are set to their default value.
exclude_none bool Whether to exclude fields that have a value of None.
exclude_computed_fields bool Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead.
round_trip bool If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings bool | Literal['none', 'warn', 'error'] How to handle serialization errors. False/“none” ignores them, True/“warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback Callable[[Any], Any] | None A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any bool Whether to serialize fields with duck-typing serialization behavior.

model_dump_json()

def model_dump_json(
    indent: int | None,
    ensure_ascii: bool,
    include: IncEx | None,
    exclude: IncEx | None,
    context: Any | None,
    by_alias: bool | None,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    exclude_computed_fields: bool,
    round_trip: bool,
    warnings: bool | Literal['none', 'warn', 'error'],
    fallback: Callable[[Any], Any] | None,
    serialize_as_any: bool,
) -> str

!!! abstract “Usage Documentation” model_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameter Type Description
indent int | None Indentation to use in the JSON output. If None is passed, the output will be compact.
ensure_ascii bool If True, the output is guaranteed to have all incoming non-ASCII characters escaped. If False (the default), these characters will be output as-is.
include IncEx | None Field(s) to include in the JSON output.
exclude IncEx | None Field(s) to exclude from the JSON output.
context Any | None Additional context to pass to the serializer.
by_alias bool | None Whether to serialize using field aliases.
exclude_unset bool Whether to exclude fields that have not been explicitly set.
exclude_defaults bool Whether to exclude fields that are set to their default value.
exclude_none bool Whether to exclude fields that have a value of None.
exclude_computed_fields bool Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead.
round_trip bool If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings bool | Literal['none', 'warn', 'error'] How to handle serialization errors. False/“none” ignores them, True/“warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback Callable[[Any], Any] | None A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any bool Whether to serialize fields with duck-typing serialization behavior.

model_json_schema()

def model_json_schema(
    by_alias: bool,
    ref_template: str,
    schema_generator: type[GenerateJsonSchema],
    mode: JsonSchemaMode,
    union_format: Literal['any_of', 'primitive_type_array'],
) -> dict[str, Any]

Generates a JSON schema for a model class.

Parameter Type Description
by_alias bool Whether to use attribute aliases or not.
ref_template str The reference template. - 'any_of': Use the anyOf keyword to combine schemas (the default). - 'primitive_type_array': Use the type keyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type (string, boolean, null, integer or number) or contains constraints/metadata, falls back to any_of.
schema_generator type[GenerateJsonSchema] To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode JsonSchemaMode The mode in which to generate the schema.
union_format Literal['any_of', 'primitive_type_array']

model_parametrized_name()

def model_parametrized_name(
    params: tuple[type[Any], ...],
) -> str

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameter Type Description
params tuple[type[Any], ...] Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

model_post_init()

def model_post_init(
    context: Any,
)

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Parameter Type Description
context Any

model_rebuild()

def model_rebuild(
    force: bool,
    raise_errors: bool,
    _parent_namespace_depth: int,
    _types_namespace: MappingNamespace | None,
) -> bool | None

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameter Type Description
force bool Whether to force the rebuilding of the model schema, defaults to False.
raise_errors bool Whether to raise errors, defaults to True.
_parent_namespace_depth int The depth level of the parent namespace, defaults to 2.
_types_namespace MappingNamespace | None The types namespace, defaults to None.

model_validate()

def model_validate(
    obj: Any,
    strict: bool | None,
    extra: ExtraValues | None,
    from_attributes: bool | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

Validate a pydantic model instance.

Parameter Type Description
obj Any The object to validate.
strict bool | None Whether to enforce types strictly.
extra ExtraValues | None Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details.
from_attributes bool | None Whether to extract data from object attributes.
context Any | None Additional context to pass to the validator.
by_alias bool | None Whether to use the field’s alias when validating against the provided input data.
by_name bool | None Whether to use the field’s name when validating against the provided input data.

model_validate_json()

def model_validate_json(
    json_data: str | bytes | bytearray,
    strict: bool | None,
    extra: ExtraValues | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

!!! abstract “Usage Documentation” JSON Parsing

Validate the given JSON data against the Pydantic model.

Parameter Type Description
json_data str | bytes | bytearray The JSON data to validate.
strict bool | None Whether to enforce types strictly.
extra ExtraValues | None Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details.
context Any | None Extra variables to pass to the validator.
by_alias bool | None Whether to use the field’s alias when validating against the provided input data.
by_name bool | None Whether to use the field’s name when validating against the provided input data.

model_validate_strings()

def model_validate_strings(
    obj: Any,
    strict: bool | None,
    extra: ExtraValues | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

Validate the given object with string data against the Pydantic model.

Parameter Type Description
obj Any The object containing string data to validate.
strict bool | None Whether to enforce types strictly.
extra ExtraValues | None Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details.
context Any | None Extra variables to pass to the validator.
by_alias bool | None Whether to use the field’s alias when validating against the provided input data.
by_name bool | None Whether to use the field’s name when validating against the provided input data.

new_remote()

def new_remote(
    file_name: Optional[str],
    hash_method: Optional[HashMethod | str],
) -> File[T]

Create a new File reference for a remote file that will be written to.

Use this when you want to create a new file and write to it directly without creating a local file first.

Example (Async):

@env.task
async def create_csv() -> File:
    df = pd.DataFrame({"col1": [1, 2], "col2": [3, 4]})
    file = File.new_remote()
    async with file.open("wb") as f:
        df.to_csv(f)
    return file
Parameter Type Description
file_name Optional[str] Optional string specifying a remote file name. If not set, a generated file name will be returned.
hash_method Optional[HashMethod | str] Optional HashMethod or string to use for cache key computation. If a string is provided, it will be used as a precomputed cache key. If a HashMethod is provided, it will be used to compute the hash as data is written.

open()

def open(
    mode: str,
    block_size: Optional[int],
    cache_type: str,
    cache_options: Optional[dict],
    compression: Optional[str],
    kwargs,
) -> AsyncGenerator[Union[AsyncWritableFile, AsyncReadableFile, 'HashingWriter'], None]

Asynchronously open the file and return a file-like object.

Use this method in async tasks to read from or write to files directly.

Example (Async Read):

@env.task
async def read_file(f: File) -> str:
    async with f.open("rb") as fh:
        content = bytes(await fh.read())
        return content.decode("utf-8")

Example (Async Write):

@env.task
async def write_file() -> File:
    f = File.new_remote()
    async with f.open("wb") as fh:
        await fh.write(b"Hello, World!")
    return f

Example (Streaming Read):

@env.task
async def stream_read(f: File) -> str:
    content_parts = []
    async with f.open("rb", block_size=1024) as fh:
        while True:
            chunk = await fh.read()
            if not chunk:
                break
            content_parts.append(chunk)
    return b"".join(content_parts).decode("utf-8")
Parameter Type Description
mode str
block_size Optional[int] Size of blocks for reading in bytes. Useful for streaming large files.
cache_type str Caching mechanism to use (‘readahead’, ‘mmap’, ‘bytes’, ’none’)
cache_options Optional[dict] Dictionary of options for the cache
compression Optional[str] Compression format or None for auto-detection
kwargs **kwargs

open_sync()

def open_sync(
    mode: str,
    block_size: Optional[int],
    cache_type: str,
    cache_options: Optional[dict],
    compression: Optional[str],
    kwargs,
) -> Generator[IO[Any], None, None]

Synchronously open the file and return a file-like object.

Use this method in non-async tasks to read from or write to files directly.

Example (Sync Read):

@env.task
def read_file_sync(f: File) -> str:
    with f.open_sync("rb") as fh:
        content = fh.read()
        return content.decode("utf-8")

Example (Sync Write):

@env.task
def write_file_sync() -> File:
    f = File.new_remote()
    with f.open_sync("wb") as fh:
        fh.write(b"Hello, World!")
    return f
Parameter Type Description
mode str
block_size Optional[int] Size of blocks for reading in bytes. Useful for streaming large files.
cache_type str Caching mechanism to use (‘readahead’, ‘mmap’, ‘bytes’, ’none’)
cache_options Optional[dict] Dictionary of options for the cache
compression Optional[str] Compression format or None for auto-detection
kwargs **kwargs

parse_file()

def parse_file(
    path: str | Path,
    content_type: str | None,
    encoding: str,
    proto: DeprecatedParseProtocol | None,
    allow_pickle: bool,
) -> Self
Parameter Type Description
path str | Path
content_type str | None
encoding str
proto DeprecatedParseProtocol | None
allow_pickle bool

parse_obj()

def parse_obj(
    obj: Any,
) -> Self
Parameter Type Description
obj Any

parse_raw()

def parse_raw(
    b: str | bytes,
    content_type: str | None,
    encoding: str,
    proto: DeprecatedParseProtocol | None,
    allow_pickle: bool,
) -> Self
Parameter Type Description
b str | bytes
content_type str | None
encoding str
proto DeprecatedParseProtocol | None
allow_pickle bool

pre_init()

def pre_init(
    data,
)

Internal: Pydantic validator to set default name from path. Not intended for direct use.

Parameter Type Description
data

schema()

def schema(
    by_alias: bool,
    ref_template: str,
) -> Dict[str, Any]
Parameter Type Description
by_alias bool
ref_template str

schema_json()

def schema_json(
    by_alias: bool,
    ref_template: str,
    dumps_kwargs: Any,
) -> str
Parameter Type Description
by_alias bool
ref_template str
dumps_kwargs Any

schema_match()

def schema_match(
    incoming: dict,
)

Internal: Check if incoming schema matches File schema. Not intended for direct use.

Parameter Type Description
incoming dict

update_forward_refs()

def update_forward_refs(
    localns: Any,
)
Parameter Type Description
localns Any

validate()

def validate(
    value: Any,
) -> Self
Parameter Type Description
value Any

Properties

Property Type Description
model_extra None Get extra fields set during validation. Returns: A dictionary of extra fields, or None if config.extra is not set to "allow".
model_fields_set None Returns the set of fields that have been explicitly set on this model instance. Returns: A set of strings representing the fields that have been set, i.e. that were not filled from defaults.